379 research outputs found

    Generalized gradient flow structure of internal energy driven phase field systems

    Get PDF
    In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals

    Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in 3D

    Get PDF
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn--Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: the state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem

    A degenerating PDE system for phase transitions and damage

    Full text link
    In this paper, we analyze a PDE system arising in the modeling of phase transition and damage phenomena in thermoviscoelastic materials. The resulting evolution equations in the unknowns \theta (absolute temperature), u (displacement), and \chi (phase/damage parameter) are strongly nonlinearly coupled. Moreover, the momentum equation for u contains \chi-dependent elliptic operators, which degenerate at the pure phases (corresponding to the values \chi=0 and \chi=1), making the whole system degenerate. That is why, we have to resort to a suitable weak solvability notion for the analysis of the problem: it consists of the weak formulations of the heat and momentum equation, and, for the phase/damage parameter \chi, of a generalization of the principle of virtual powers, partially mutuated from the theory of rate-independent damage processes. To prove an existence result for this weak formulation, an approximating problem is introduced, where the elliptic degeneracy of the displacement equation is ruled out: in the framework of damage models, this corresponds to allowing for partial damage only. For such an approximate system, global-in-time existence and well-posedness results are established in various cases. Then, the passage to the limit to the degenerate system is performed via suitable variational techniques

    On a 3D isothermal model for nematic liquid crystals accounting for stretching terms

    Full text link
    The present contribution investigates the well-posedness of a PDE system describing the evolution of a nematic liquid crystal flow under kinematic transports for molecules of different shapes. More in particular, the evolution of the {\em velocity field} \ub is ruled by the Navier-Stokes incompressible system with a stress tensor exhibiting a special coupling between the transport and the induced terms. The dynamic of the {\em director field} \bd is described by a variation of a parabolic Ginzburg-Landau equation with a suitable penalization of the physical constraint |\bd|=1. Such equation accounts for both the kinematic transport by the flow field and the internal relaxation due to the elastic energy. The main aim of this contribution is to overcome the lack of a maximum principle for the director equation and prove (without any restriction on the data and on the physical constants of the problem) the existence of global in time weak solutions under physically meaningful boundary conditions on \bd and \ub

    Collisions in shape memory alloys

    Full text link
    We present here a model for instantaneous collisions in a solid made of shape memory alloys (SMA) by means of a predictive theory which is based on the introduction not only of macroscopic velocities and temperature, but also of microscopic velocities responsible of the austenite-martensites phase changes. Assuming time discontinuities for velocities, volume fractions and temperature, and applying the principles of thermodynamics for non-smooth evolutions together with constitutive laws typical of SMA, we end up with a system of nonlinearly coupled elliptic equations for which we prove an existence and uniqueness result in the 2 and 3 D cases. Finally, we also present numerical results for a SMA 2D solid subject to an external percussion by an hammer stroke

    Long-time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth

    Full text link
    We investigate the long-time dynamics and optimal control problem of a diffuse interface model that describes the growth of a tumor in presence of a nutrient and surrounded by host tissues. The state system consists of a Cahn-Hilliard type equation for the tumor cell fraction and a reaction-diffusion equation for the nutrient. The possible medication that serves to eliminate tumor cells is in terms of drugs and is introduced into the system through the nutrient. In this setting, the control variable acts as an external source in the nutrient equation. First, we consider the problem of `long-time treatment' under a suitable given source and prove the convergence of any global solution to a single equilibrium as t+t\to+\infty. Then we consider the `finite-time treatment' of a tumor, which corresponds to an optimal control problem. Here we also allow the objective cost functional to depend on a free time variable, which represents the unknown treatment time to be optimized. We prove the existence of an optimal control and obtain first order necessary optimality conditions for both the drug concentration and the treatment time. One of the main aim of the control problem is to realize in the best possible way a desired final distribution of the tumor cells, which is expressed by the target function ϕΩ\phi_\Omega. By establishing the Lyapunov stability of certain equilibria of the state system (without external source), we see that ϕΩ\phi_{\Omega} can be taken as a stable configuration, so that the tumor will not grow again once the finite-time treatment is completed

    Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in 2D

    Get PDF
    We study a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids coupling the Navier--Stokes system with a convective nonlocal Cahn--Hilliard equation in two dimensions of space. We apply recently proved well-posedness and regularity results in order to establish existence of optimal controls as well as first-order necessary optimality conditions for an associated optimal control problem in which a distributed control is applied to the fluid flow.Comment: 32 page

    Unsaturated deformable porous media flow with phase transition

    Get PDF
    In the present paper, a continuum model is introduced for fluid flow in a deformable porous medium, where the fluid may undergo phase transitions. Typically, such problems arise in modeling liquid-solid phase transformations in groundwater flows. The system of equations is derived here from the conservation principles for mass, momentum, and energy and from the Clausius-Duhem inequality for entropy. It couples the evolution of the displacement in the matrix material, of the capillary pressure, of the absolute temperature, and of the phase fraction. Mathematical results are proved under the additional hypothesis that inertia effects and shear stresses can be neglected. For the resulting highly nonlinear system of two PDEs, one ODE and one ordinary differential inclusion with natural initial and boundary conditions, existence of global in time solutions is proved by means of cut-off techniques and suitable Moser-type estimates

    Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows

    Get PDF
    In this paper we investigate the three dimensional general Ericksen-Leslie (E--L) system with Ginzburg-Landau type approximation modeling nematic liquid crystal flows. First, by overcoming the difficulties from lack of maximum principle for the director equation and high order nonlinearities for the stress tensor, we prove existence of global-in-time weak solutions under physically meaningful boundary conditions and suitable assumptions on the Leslie coefficients, which ensures that the total energy of the E--L system is dissipated. Moreover, for the E--L system with periodic boundary conditions, we prove the local well-posedness of classical solutions under the so-called Parodi's relation and establish a blow-up criterion in terms of the temporal integral of both the maximum norm of the curl of the velocity field and the maximum norm of the gradient of the liquid crystal director field

    On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids

    Get PDF
    We introduce a diffuse interface model describing the evolution of a mixture of two different viscous incompressible fluids of equal density. The main novelty of the present contribution consists in the fact that the effects of temperature on the flow are taken into account. In the mathematical model, the evolution of the macroscopic velocity is ruled by the Navier-Stokes system with temperature-dependent viscosity, while the order parameter representing the concentration of one of the components of the fluid is assumed to satisfy a convective Cahn-Hilliard equation. The effects of the temperature are prescribed by a suitable form of the heat equation. However, due to quadratic forcing terms, this equation is replaced, in the weak formulation, by an equality representing energy conservation complemented with a differential inequality describing production of entropy. The main advantage of introducing this notion of solution is that, while the thermodynamical consistency is preserved, at the same time the energy-entropy formulation is more tractable mathematically. Indeed, global-in-time existence for the initial-boundary value problem associated to the weak formulation of the model is proved by deriving suitable a-priori estimates and showing weak sequential stability of families of approximating solutions.Comment: 26 page
    corecore